32 research outputs found

    Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set

    Get PDF
    Using quantitative radiomics, we demonstrate that computer-extracted magnetic resonance (MR) image-based tumor phenotypes can be predictive of the molecular classification of invasive breast cancers. Radiomics analysis was performed on 91 MRIs of biopsy-proven invasive breast cancers from National Cancer Institute’s multi-institutional TCGA/TCIA. Immunohistochemistry molecular classification was performed including estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and for 84 cases, the molecular subtype (normal-like, luminal A, luminal B, HER2-enriched, and basal-like). Computerized quantitative image analysis included: three-dimensional lesion segmentation, phenotype extraction, and leave-one-case-out cross validation involving stepwise feature selection and linear discriminant analysis. The performance of the classifier model for molecular subtyping was evaluated using receiver operating characteristic analysis. The computer-extracted tumor phenotypes were able to distinguish between molecular prognostic indicators; area under the ROC curve values of 0.89, 0.69, 0.65, and 0.67 in the tasks of distinguishing between ER+ versus ER−, PR+ versus PR−, HER2+ versus HER2−, and triple-negative versus others, respectively. Statistically significant associations between tumor phenotypes and receptor status were observed. More aggressive cancers are likely to be larger in size with more heterogeneity in their contrast enhancement. Even after controlling for tumor size, a statistically significant trend was observed within each size group (P = 0.04 for lesions ≤ 2 cm; P = 0.02 for lesions >2 to≤ 5 cm) as with the entire data set (P-value = 0.006) for the relationship between enhancement texture (entropy) and molecular subtypes (normal-like, luminal A, luminal B, HER2-enriched, basal-like). In conclusion, computer-extracted image phenotypes show promise for high-throughput discrimination of breast cancer subtypes and may yield a quantitative predictive signature for advancing precision medicine

    Computer-aided diagnosis in medical imaging.

    No full text
    Item does not contain fulltex

    Breast Image Analysis for Risk Assessment, Detection, Diagnosis, and Treatment of Cancer

    No full text
    Item does not contain fulltextThe role of breast image analysis in radiologists' interpretation tasks in cancer risk assessment, detection, diagnosis, and treatment continues to expand. Breast image analysis methods include segmentation, feature extraction techniques, classifier design, biomechanical modeling, image registration, motion correction, and rigorous methods of evaluation. We present a review of the current status of these task-based image analysis methods, which are being developed for the various image acquisition modalities of mammography, tomosynthesis, computed tomography, ultrasound, and magnetic resonance imaging. Depending on the task, image-based biomarkers from such quantitative image analysis may include morphological, textural, and kinetic characteristics and may depend on accurate modeling and registration of the breast images. We conclude with a discussion of future directions. Expected final online publication date for the Annual Review of Biomedical Engineering Volume 15 is July 11, 2013. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates

    Predicting Triple-Negative Breast Cancer and Axillary Lymph Node Metastasis Using Diagnostic MRI

    No full text

    Po-topic III-09

    No full text

    Computer-aided classification of lesions by means of their kinetic signatures in dynamic contrast-enhanced MR images

    No full text
    The kinetic characteristics of tissue in dynamic contrast-enhanced magnetic resonance imaging data are an important source of information for the differentiation of benign and malignant lesions. Kinetic curves measured for each lesion voxel allow to infer information about the state of the local tissue. As a whole, they reflect the heterogeneity of the vascular structure within a lesion, an important criterion for the preoperative classification of lesions. Current clinical practice in analysis of tissue kinetics however is mainly based on the evaluation of the "most-suspect curve", which is only related to a small, manually or semi-automatically selected region-of-interest within a lesion and does not reflect any information about tissue heterogeneity. We propose a new method which exploits the full range of kinetic information for the automatic classification of lesions. Instead of breaking down the large amount of kinetic information to a single curve, each lesion is considered as a probability distribution in a space of kinetic features, efficiently represented by its kinetic signature obtained by adaptive vector quantization of the corresponding kinetic curves. Dissimilarity of two signatures can be objectively measured using the Mallows distance, which is a metric defined on probability distributions. The embedding of this metric in a suitable kernel function enables us to employ modern kernel-based machine learning techniques for the classification of signatures. In a study considering 81 breast lesions, the proposed method yielded an Az value of 0.89±0.01 for the discrimination of benign and malignant lesions in a nested leave-one-lesion-out evaluation settin
    corecore